
PHYSICS 536 Experiment 7: Transistor Biasing Equation Chapter 7 Section 1

Appropriate DC operating conditions must be established for any circuit before it can be used to respond to an input signal. These are called the bias or quiescent conditions (i.e., without an input signal). The quiescent currents and voltages in the circuit must permit the expected changes to occur without getting the transistor out of its normal operating range.

This experiment involves only DC measurements, however we still use bypass capacitors because AC signals can distort DC measurements. Refer to GIL sections 3.2 and 13.1 for further instructions. Remember to turn off the voltage supplies before components are changed.

A. Theoretical Summary

The quiescent drain voltage (V_d) determines the maximum possible change in drain voltage. V_d cannot go higher than V_p or lower than the minimum voltage needed to operate the FET. The minimum voltage is equal to V_T because the gate is at zero volts in this circuit, recall that $I_d = (V_p - V_T)/2R_3$. The two following equations express the maximum possible drain variations are $+\Delta V_d \leq (V_p - V_d)$ and $-\Delta V_d \leq (V_d - V_T)$.

These limits restrict the amplitude of the output signal, V_o . The value of V_d is determined by the voltage drop across R_3

$$V_d = V_p - I_d R_3 \tag{1.1}$$

The maximum amplitude is obtained for a sine wave when the positive and negative limits are equal. I_d is then given by the following relation:

$$I_d = (V_p - V_T) / 2R_3 \tag{1.2}$$

1. Self-Bias for a FET, $V_n = 0$. The value of R_1 needed to obtain the desired I_d is:

$$R_{1} = V_{T} / I_{d} [1 - (I_{d} / I_{dss})^{1/2}]$$
(1.3)

2. Controlled Biasing, V_n is nonzero. The current is much less dependent on transistor parameters when a biasing voltage, V_n , and a larger series resistor, R_1 , are used. The drain current is given by

$$I_d = (V_{gs} - V_n) / R_1 \tag{1.4}$$

When V_{gs} is not negligible compared to V_n , it can be estimated using the following equations.

$$V_{gs} = V_T [1 - (I_d / I_{dss})^{1/2}]$$
(1.5)

$$V_{gs} \approx 0.3 V_T$$
 when $I_d \approx I_{dss/2}$

In BJT circuits, V_{be} can usually be estimated by 0.6V, but it may be necessary to include the voltage drop across R_2 . The collector current is then given by

$$I_{c} = \frac{-0.6V - V_{n}}{R_{1} + R_{2} / h_{fe}}$$
(1.6)

When a voltage divider is used to lift the base of a BJT above common, it may be necessary to include the effect of base current to calculate the base voltage. The base voltage is then given by

$$V_{b} = V_{p} \frac{(R_{2} \parallel r_{b})}{(R_{4} + (R_{2} \parallel r_{b}))}$$
(1.7)

$$r_b \approx h_{fe} R_1 \tag{1.8}$$

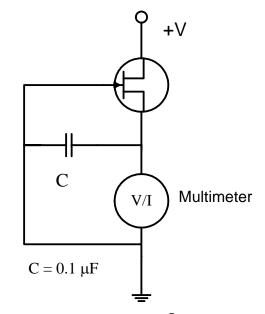
As usual, the BJT current is determined by the voltage across the resistor $R_{_1}$ in series the emitter.

$$I_{1} = (V_{1} - 0.6V) / R_{1}$$

The equivalent change in base-emitter voltage (V_{μ}) due to heating in a BJT is,

$$V_{H} = C_{T} \Delta T = C_{T} (\theta_{JA} \Delta P) = C_{T} (\theta_{JA} I_{c} \Delta V_{c})$$
$$C_{T} = 2mV / \text{degree}C$$

When I_c is held approximately constant, by using a large value for R_I , V_H is observed as a change in V_{be} . V_{be} decreases when the temperature increases.


B. Simplified Measurement for I_{dss} and V_{T}

A multi-meter can be used to measure I_{dss} and V_T easily by inserting the meter in series with the source.

The long meter lead can cause the FET to oscillate unless a by-pass capacitor is used at the source. The source voltage is determined by the FET current through the internal resistance, R_m , of the meter.

$$V_{gs} = R_m I_d \le V_T$$

The source voltage cannot be larger than V_T because that is the value that reduces

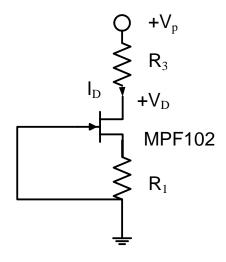
 I_d to zero. When the meter is set to read voltage, R_m is very high, hence I_d will be very small, which means that the meter reading will be approximately equal to V_T .

$$V_{meter} = V_{se} = 0.9V_T$$
 Meter on voltage scale

A 10% correction is included because I_d is slightly larger than zero. R_m is very small when the meter is on the current scale, hence V_{as} is approximately zero, which means that

$$I_d = I_{dss}$$
.

$$I_{meter} = I_d = I_{dss}$$
 Meter on current scale


This is a very useful procedure, because the basic FET parameters can be measured using only a voltage source and a V-I meter. (A 9V battery will do if you don't have a power supply available)

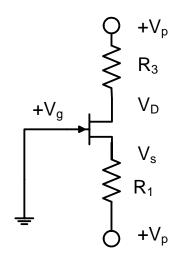
1 - Use this procedure to measure V_T and I_{dss} for a FET. Use the power supply for the drain voltage.

C. Self-Biasing of a JFET

Typical values and data from the device specifications for V_T and I_{dss} will be used to calculate bias conditions for homework. The measured values of these parameters from step 1 will be used to calculate observables in lab.

2 - Use the typical V_T and I_{dss} given on the component sheet. Calculate the I_d needed to set the quiescent drain voltage (V_d) half way between the power supply voltage (V_p) and the minimum voltage (V_m) needed by FET. $(V_m = V_T$ in this circuit because $V_{gs} = 0$) Use equation (1.4) to calculate the R_1 needed

to obtain this I_d . Calculate the maximum amplitude (peak-peak), undistorted sine wave that could be obtained at the drain. Include these calculations in your laboratory report.


3 - Use the measured values from step 1 in the process described in step 2 to calculate R_1 . Use equation (1.5) to calculate the expected V_s . Use the resistor value

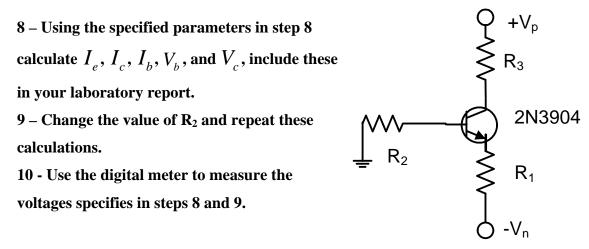
for R_1 that is closest to the calculated value. Measure V_d and V_s and compare to that expected.

D. Controlled FET Biasing

Better control of I_d can be obtained by connecting the lower end of R_1 to a negative power supply (V_n) rather than to ground. (The gate stays connected to ground.) In this arrangement I_d is controlled primarily by V_n and R_1 , but the extremes of $V_T - I_{dss}$ must be considered unless V_n is much greater than V_T .

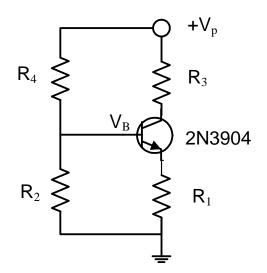
4 - Include in your laboratory report the following calculations. This circuit should have the same I_d and V_d as step 2. Use the same typical V_T and I_{dss} . Use eqn. (1.5) to calculate V_{sg} . Also calculate R_1 . Next we will see what effect different FET parameters would have on the quiescent conditions. Calculate I_d and V_d if the FET had the maximum

 V_{T} and I_{dss} given in the spec sheet. Use the I_{d} obtained with typical parameters in the first part of this problem as an estimate for the new I_{d} in eqn. (1.5), which in turn is used to estimate the new V_{gs} . This estimate is adequate because R_{1} prevents I_{d} from changing dramatically. Repeat for the minimum parameters given in the


spec sheet. When $V_n \gg V_{sg}$, I_d is relatively independent of the FET parameters because they only affect V_{sg} .

5 - Use a 5% resistor that is nearest to the value of R_1 calculated in step 4. V_s will be approximately the same as that calculated in step 3 because the circuit is designed to have the same I_d . Measure V_d and V_s and compare to the expected values. 6 - Observe V_s with a meter while you vary V_n from 0 to 25 volts. You will see that V_s changes as necessary so that the channel can conduct the current flowing through R_1 . Give a brief explanation of how this self-adjustment occurs in your own words.

7 - Include in your laboratory report the following calculations. The object is to set the quiescent V_d to obtain a maximum positive change at the drain i.e. v_d is a positive pulse. I_d should be selected so that $V_d = V_T$ (max). Then in the worst case there will be adequate drain voltage for the FET. Next calculate R_1 estimating $V_{sg} = V_T$ (max). What value of I_d would occur with this R_1 if V_T and I_{dss} were at the minimum? What limit would be imposed on the amplitude of V_d ? No measurement required.


E. Controlled BJT Biasing

Although the circuit used here is similar to that in the preceding section, remember that the pin order on the BJT and FET are <u>not</u> the same. First, a small R_2 will be used so that it doesn't affect the measurement. Then R_2 will be larger so that it has an effect.

F. Controlled BJT Biasing with a Voltage Divider

The advantage of controlled biasing can be obtained with a single power supply by using a voltage divider to set the DC voltage at the input. The calculations are simple for a FET because its gate current is

negligible, but the base current of a BJT can affect he divider. First we consider a case where the divider resistors are small, divider current large, so that I_b can be neglected. Next we increase the divider resistors to obtain a higher resistance at the input and include the effect of I_b on V_b .

11 - Calculate V_b , I_c , and V_c and include these in your laboratory report. What is the maximum positive and negative change available at the collector? (Assume an AC ground at the emitter).

12 - Repeat 11 for a different divider resistances.

13 - Set up the circuits and use the digital meter to measure the voltages specified in steps 11 and 12. An emitter bypass capacitor is not needed for these DC measurements. 2-3. $V_p = 20V$, $V_T = 2V$, $I_{DSS} = 8$ ma, $R_3 = 10K$ 4-7. $V_p = 20V$, $V_n = -20V$, $R_3 = 10K$ 8-10. $V_p = 20V$, $V_n = -20V$, $R_3 = 10K$, $R_1 = 20K$, $h_{fe} = 100$ 8. $R_2 = 4.7K$ 9. $R_2 = 510K$ 11-13. $V_p = 25V$, $R_1 = 3.3K$, $R_3 = 20K$, $h_{fe} = 100$ 11. $R_2 = 3.9K$ $R_4 = 20K$ 12. $R_2 = 33K$ $R_4 = 150K$